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I. INTRODUCTION

In the past much attention has been paid to the study of a
turbulent fluid flow with particles. From these studies it is
known that when the mass loading of the particles is consid-
erable the two-way coupling effect of the fluid on the par-
ticles and vice versa must be taken into account. This two-
way coupling effect has been studied by means of direct
numerical simulations(DNSs), experiments, and theoretical
models. Below a listing of some important publications
about this topic is given. A more detailed description about
their content can be found in the publication of L’vov, Ooms,
and Pomyalov[1]. For an even more detailed overview we
refer to the coming review article by Ooms and Poelma[2].
We have restricted ourselves to publications about homoge-
neous and isotropic, turbulently flowing suspensions, as the
research presented in this publication also deals with such a
suspension. We will pay special attention to the influence of
the particles on the turbulent kinetic energy spectrum of the
carrier fluid.

Several authors have applied DNS to particle-laden ho-
mogeneous, isotropic turbulent flows. For instance, Squires
and Eaton[3] used DNS to study a forced(so statistically
stationary) homogeneous, isotropic turbulent suspension.
Elghobashi and Truesdell[4] examined turbulence modula-
tion by particles in decaying turbulence. Similar DNS studies
(for a stationary or decaying turbulent suspension) with more
details were carried out by Boivin, Simonin, and Squires[5],
Sundaram and Collins[6], Druzhinin [7], ten Cate[8], and
Ferrante and Elghobashi[9]. From these studies it can be
concluded that in the low wave number part of the turbulent
kinetic energy spectrum the turbulent fluid motion transfers
energy to the particles, i.e., the particles act as a sink of
kinetic energy. At high wave numbers of the spectrum the
particles(when their response time is small enough) are ca-
pable of adding kinetic energy to the turbulence. This energy,
“released” by the particles, is not immediately dissipated by
viscous effect but is in fact responsible for the relative in-
crease of small-scale energy compared to the particle-free
case.

Several articles about experimental investigations of
particle-laden turbulent suspensions have been published.
For instance, Tsuji and Morikawa[10] measured turbulent

kinetic energy spectra in an air flow with small particles
through a horizontal channel. Tsuji, Morikawa, and Shiomi
[11] extended this work to a vertical channel flow. Schreck
and Kleis [12] studied turbulence modulation by particles
in grid-generated turbulence in a water channel. Kulick,
Fessler, and Eaton[13] carried out experiments with small
copper particles in an air flow through a channel flow. Sato
and Hishida[14] performed PIV measurements in a water
channel flow with three types of particles. Similar to Schreck
and Kleis, Hussainovet al. [15] also investigated a grid-
generated turbulent flow with particles, but they used a wind
tunnel. Some of these experiments seem to support the con-
clusion given above with respect to the influence of the par-
ticles on the turbulence spectrum based on DNS simulations.
However, more detailed experimental work is needed.

Also theoretical models have been developed for a homo-
geneous, isotropic, and turbulently flowing suspension. Baw
and Peskin[16] derived a set of balance equations to study
the effect of the particles and the turbulent kinetic energy
spectrum of the fluid. Al Taweel and Landau[17] calculated
the rate of additional energy dissipation due to the presence
of the particles, in order to study the two-way coupling ef-
fect. Felderhof and Ooms[18] developed a theoretical model
based on the linearized version of the Navier-Stokes equation
and pay particular attention to the influence of the hydrody-
namic interaction between the particles and the influence of
the finite size of the particles. Yuan and Michaelides[19]
presented a model for the turbulence modification in particle-
laden flows based on the interaction between particles and
turbulence eddies. Also the turbulence generation in the
wake behind the particles was taken into account. Boivin,
Simonin, and Squires[5] extended the model of Baw and
Peskin. Druzhinin[7] studied the two-way coupling effect on
the decay rate of isotropic turbulence laden with micropar-
ticles whose response time is much smaller than the Kolmog-
orov time scale.

Recently L’vov, Ooms, and Pomyalov[1] developed a
one-fluid theoretical model for a homogeneous, isotropic tur-
bulently flowing suspension. It is based on a modified
Navier-Stokes equation with a wave-number-dependent ef-
fective density of suspension and an additional damping term
representing the fluid-particle friction(described by Stokes’
law). The statistical description of turbulence within the
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model is simplified by a modification of the usual closure
procedure based on the Richardson-Kolmogorov picture of
turbulence. A differential equation for the budget of turbulent
kinetic energy is derived. For the case of a stationary turbu-
lent suspension L’vovet al. solved this budget equation ana-
lytically for various important limiting cases and numerically
for the general case. The model successfully explains ob-
served features of numerical simulations and experimental
results of stationary turbulent suspensions. For instance, for a
suspension with particles with a response time much larger
than the Kolmogorov time the main effect of the particles is
suppression of the turbulence energy of fluid eddies of all
sizes(at the same energy input as for the particle-free case).
However, for a suspension with particles with a response
time comparable to or smaller than the Kolmogorov time
scale, the Kolmogorov length scale will decrease and the
turbulence energy of eddies of(nearly) all sizes increases.
For a suspension with particles with a response time in be-
tween the two limiting cases mentioned above the energy of
the larger eddies is suppressed whereas the energy of the
smaller eddies is enhanced. We think that the model of
L’vov, Ooms, and Pomyalov gives a good description of the
physical mechanisms taking place in a turbulent suspension.
Therefore, we have extended their model in this publication.

In their paper L’vovet al. do not apply their model to
a decaying turbulent suspension. Recently Ferrante and
Elghobashi[9] published results concerning very accurate
direct numerical simulations of a decaying, homogeneous,
and isotropic turbulent suspension. In their work they again
found the phenomena described above for the influence of
the particles on the turbulence.(In some earlier publications
these phenomena were already discussed for a decaying sus-
pension, but with less detail and less attention to their physi-
cal explanation.) Therefore we decided to extend the theoret-
ical model in such a way that it can be applied to a decaying,
homogeneous, and isotropic turbulent suspension and to
compare model predictions with the DNS data of Ferrante
and Elghobashi. The results are given in this publication.

Section II is devoted to a brief summary of the one-fluid
theoretical model, with attention for the extension which is
necessary for the application to a decaying suspension. In
Sec. III the relevant DNS results(and their explanation)
given in the publication by Ferrante and Elghobashi[9] are
summarized. In Sec. IV predictions made with our theoreti-
cal model for a decaying turbulent suspension and a com-
parison with the DNS results of Ferrante and Elghobashi are
given. The results are discussed in Sec. V.

II. THEORETICAL MODEL

Starting from the Navier-Stokes equation for the carrier
fluid and Stokes’ friction law for the particles L’vovet al. [1]
derive first the following equation of motion for the suspen-
sion:

reffskdS ]

] t
+ gpskd + g0skdDust,kd = − Nhu,ujt,k + fst,kd.

s1d

In this equationust ,kd represents the suspension velocity,t
the time, andk the wave vector.fst ,kd is the stirring force

that creates turbulence in case a stationary suspension is
studied.reffskd is the wave-number-dependent effective den-
sity of suspension given by

reffskd = r fS1 − c + f
1 + 2tpgskd

f1 + tpgskdg2D , s2d

in which r f is the density of the carrier fluid,c the volume
fraction of the particles in the suspension,f the mass frac-
tion of the particles,tp the particle response time, andgskd
the frequency of a turbulent eddy with wave numberk. gpskd
is an additional damping term representing the fluid-particle
friction (described by Stokes’ law)

gpskd =
ftpfgskdg2

s1 + fdf1 + 2tpgskdg + ftpgskdg2 . s3d

The damping termg0skd is due to the internal friction within
the carrier fluid and is given by

g0skd = neffskdk2, s4d

with

neffskd = nr f/reffskd, s5d

in which n is the viscosity of the carrier fluid.Nhu ,ujt,k is
the nonlinear term. The explicit form that is derived for it in
the publication of L’vovet al. is not given here. It is not
required for the simple closure procedure that was used in
the original publication and which is also used here. For the
introduction of the energy flux in the used closure procedure
it is enough to use the fact that the modeled nonlinearity
must be conservative.(The explicit form for the nonlinear
term is needed, however, for more advanced closure proce-
dures.)

From Eq.(1) L’vov et al. derive for(a homogeneous and
isotropic) turbulent suspension the following budget equa-
tion for the spectrum of the density of turbulent kinetic en-
ergy Esst ,kd of the suspension:

1

2

] Esst,kd
] t

+ fg0skd + gpskdgEsst,kd = Wst,kd + Rst,kd.

s6d

The left-hand side of this equation includes next to the time-
dependent term two damping termsg0skdEsst ,kd caused by
the effective viscosity andgpskdEsst ,kd caused by the fluid-
particle friction. The right-hand side includes the source of
energyWst ,kd due to a possible stirring force(localized in
the energy containing interval of the spectrum) and the en-
ergy redistribution termRst ,kd due to the interaction between
turbulence eddies. Using the assumption that the modeled
nonlinearity is conservative the energy redistribution term
can be written as

Rst,kd = −
] est,kd

] k
s7d

in which est ,kd is the energy flux through the turbulence
eddies of the suspension.
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As mentioned above, a simple closure relation is used.
Applying dimension analysis the following relation is found
for the density of turbulent kinetic energy in terms of the
energy flux

Esst,kd = C1fe2st,kdreffst,kd/k5g1/3. s8d

C1 is a constant of order unity. The inverse lifetime(fre-
quency) of eddies gst ,kd is determined by their viscous
damping and by the energy loss in the cascade process

gst,kd = g0st,kd + gcst,kd. s9d

The inverse lifetime due to viscous damping has already
been introduced by Eqs.(4) and (5). Applying dimension
analysis the inverse lifetime of ak eddy due to energy loss in
the cascade process is given by

gcst,kd = C2fk2est,kd/reffst,kdg1/3. s10d

C2 is again a constant of order unity.
After introducing the integral-scale(L) related parameters

k=kL,eL=es1/Ld, gL=gs1/Ld, rL=reffs1/Ld, and WL

=Ws1/Ld the following dimensionless functions are defined:
ek=e /eL, gk=g /gL, rk=r /rL, and Wk=W/WL. Using the
closure relations and the dimensionless functions defined
above, the resulting budget equation for the dimensionless
energy flux for the case of a stationaryf]Esst ,kd /]t=0g tur-
bulent suspension reads

dek

dk
+ C

ek

k
Tk +

C1

Res
Ske2

k

r2
k D1/3

s1 + Tkd = Wk, s11d

where

Tk =
fdgk

s1 + fds1 + 2dgkd + sdgkd2 , s12d

and in whichC=C1C2 andd=tpgL is the dimensionless par-
ticle response time. The suspension Reynolds number is de-
fined by Res=LvL /nL. L is the integral length scale andvL
the integral velocity scale defined bynL=seLL /rLd1/3. nL is
the effective kinematic viscosity of the suspension fork
=L−1 and is given bynL=nsr f /rLd with rL the effective den-
sity of the suspension fork=L−1 given by rL=r ff1+fs1
+2dd / s1+dd2g. The fluid Reynolds number is defined by
Ref =LvL /n and is related to the suspension Reynolds num-
ber in the following way Res=Refn /nL.The functionsrk and
gk can be shown to be given by

rk = F1 + f
1 + 2dgk

s1 + dgkd2GYF1 + f
1 + 2d

s1 + dd2G s13d

and

gk =
k2

C2Resrk

+
ek

1/3k2/3

rk
1/3 . s14d

L’vov et al. solve Eq.(11) together with Eqs.(12)–(14) as a
function of the relevant dimensionless parameters: the par-
ticle mass fractionf, the dimensionless particle response
time d, and the fluid Reynolds number Ref. Also the particle
volume fractionc is a dimensionless parameter. However, in

the calculations the ratio of the particle density and fluid
density is assumed to be large(for instance, a suspension of
solid particles in gas), so that although the mass fraction was
considerable the volume fraction was negligible. From the
calculated spectrum for the energy flux the energy spectrum
of the(stationary) suspension is determined using the closure
relation.

As discussed in this publication we will investigate the
behavior of a decayingfWst ,kd=0g homogeneous, isotropic
suspension. To that purpose we have to include the time-
dependent term in the balance equation for the energy flux
Eq. (11). Using the closure relations and dimensionless func-
tions defined above we find now after some lengthy but
straightforward calculations the following balance equation
for the (dimensionless) energy flux:

fst,kd
] ekst,kd

] t
+

] ekst,kd
] k

+ gst,kd = 0, s15d

where

fst,kd =
1

3
C1k−5/3rk

1/3ek
−1/3F1 −

1

2

ek

rk

s] F/] ekd
s] F/] rkdG s16d

and

gst,kd = C
ek

k
Tk +

C1

Res
Skek

2

rk
D1/3

s1 + Tkd, s17d

with

] F

] ek

= − C3fF2ds1 + dgkds2 + 3dgkd
] gk

] ek
G s18d

and

] F

] ek

= 1 −C3fF2ds1 + dgkds2 + 3dgkd
] gk

] rk
G s19d

in which

] gk

] ek

=
1

3

k2/3

ek
2/3rk

1/3 s20d

and

] gk

] rk

= −
k2

C4rk
2 −

1

3

ek
1/3k2/3

rk
4/3 . s21d

The constantsC3 and C4 are equal toC3=f1+fs1+2dd / s1
+dd2g−1 andC4=C2Res. t is the dimensionless time defined
ast= t /tc with tc=L2/3/ seL /r fd1/3. The new budget equation
(15) for the energy flux has some interesting features: theg
term in the equation represents the energy dissipation due to
the particle-fluid friction and the internal friction because of
the fluid viscosity. The first two terms describe the influence
of the cascade process of turbulence. When theg term is
neglected Eq.(15) becomes a kind of wave equation ink
space with a time- and wave-number-dependent wave veloc-
ity fst ,kd−1.
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In order to be able to solve Eq.(15) an initial condition
and a boundary condition are needed. We will study that part
of the spectrum that runs fromk=1 (the small-wave-number
side of the inertial subrange) via the inertial subrange well
into the dissipation range. We assume also that fort,0 the
stirring force is still feeding turbulent energy atk=1 into the
inertial subrange. Att=0 the stirring force is stopped, the
energy flux atk=1 disappears and the decay process starts.
So the boundary condition is, fortù0, the energy fluxek

=0 at k=1. As initial condition st=0d we choose for the
energy flux the following spectrum forkù1:

ek = S1 −
C1

4Ref
k4/3D3YS1 −

C1

4Ref
D3

. s22d

For values ofk considerably smaller thans4Ref /C1d3/4 this
spectrum is approximately equal toek=1. So the(dimension-
less) flux is for such k values equal to its value atk
=1 sor k=L−1d.This behavior can be expected for stationary
turbulence in the inertial subrange for the case without par-
ticles. For largerk values the energy fluxek decreases due to
viscous dissipation. The spectrum of Eq.(22) is derived by
L’vov et al. using certain approximations. We use this spec-
trum as our initial condition and calculate its development in
time due to the decay process. According to the idea of uni-
versality of turbulence the properties of the energy flux
though the energy spectrum become independent of the ini-
tial condition after a relaxation time.(This is due to the lo-
cality in the energy transfer in wave number space, i.e., ed-
dies which effectively interact have similar wave numbers.)
So we do not expect a strong dependence of our results on
the initial condition.

After ek has been calculated for a certain case from Eq.
(15) the energy spectrum of the suspension can be deter-
mined using the closure relation

Es,k = ek
2/3rk

1/3k−5/3. s23d

L’vov et al. have shown that the energy flux of the carrier
fluid can be calculated from the suspension spectrum in the
following manner:

Ef,k = Es,k/rk = ek
2/3rk

−2/3k−5/3. s24d

(Es,k and Ef,k have been made dimensionless by means of
their values atk=1.) In this way it becomes possible to study
the decay of the turbulent energy spectrum of the fluid as a
function of the relevant dimensionless groups, namely the
particle mass fractionf, the dimensionless particle response
time d, and the fluid Reynolds number Ref. A computer pro-
gram has been developed to carry out the calculations.

III. DNS RESULTS FOR A DECAYING TURBULENT
SUSPENSION

Ferrante and Elghobashi[9] present a study to analyze
their recent direct-numerical-simulation(DNS) results to ex-
plain in some detail the main physical mechanisms respon-
sible for the modification of decaying homogeneous, isotro-
pic turbulence by dispersed solid particles. In their study
they fix both the volume fractionsc=10−3d and mass fraction

sf=1d for four different types of particles, classified by their
ratio of the particle response timestpd and the Kolmogorov
time scale of turbulencestkd. From the values of the volume
fraction and mass fraction it follows, that the ratio of the
particle densitysrpd and the fluid densitysr fd is 103. The
ratio tp/tk has the values 0.1, 0.25, 1.0, and 5.0. As the mass
fraction is kept constant, the number of particles per unit of
volume decreases in the numerical simulation with increas-
ing particle response time. The total number of particles is
considerable(80 million for a typical case). The particles are
treated as point particles. Their simulations are carried out
with and without including the effect of gravity. The numeri-
cal study has been performed with high resolution.

In their publication Ferrante and Elghobashi discuss a
number of interesting physical effects. Here we will concen-
trate on one particular effect and compare their results with
our theoretical predictions for this effect. In Fig. 1 we show
the result for the time evolution of the decaying turbulent
kinetic energy of the carrier fluidEstd, normalized by its
initial value Es0d at t=0, for the case without gravity. The
particles are released in the turbulent flow field att=1. [Their
notation for the turbulent kinetic energyE is in our notation
given by Ef. Their notationt represents time made dimen-
sionless withtc=0.2144 s. In our calculations we have made
time dimensionless by means oftc=L2/3/ seL /r fd1/3. So when
we want to compare their numerical results with our predic-
tions, we have to translate our dimensionless timet to their
t.] In Fig. 1 the result indicated by case A is for the particle-
free flow, the results indicated by cases B, C, D, and E are
for the carrier fluid in the suspension with particles of in-
creasing response time(tp/tk=0.1, 0.25, 1.0, and 5.0), re-
spectively. It is clear that the smallest particles(with tp/tk

=0.1) reduce the decay rate of the(dimensionless) turbulent
kinetic energy with respect to the particle-free flow, resulting
in Estd /Es0d being larger than that for the particle-free flow.
This is the particular effect, that we mentioned above.(Fer-
rante and Elghobashi call the particles of case B “micropar-
ticles.”) The particles with a considerably larger inertia
(cases D and E) initially enhance the decay rate of the tur-
bulent kinetic energy resulting in values of the kinetic energy
being smaller than for the particle-free flow at all times. The

FIG. 1. Dimensionless turbulent kinetic energy as a function of
dimensionless time. From Ferrante and Elghobashi[9].
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larger the particles(the larger their inertia and response
time), the stronger the damping of the turbulence. After a
certain period the difference between the turbulent kinetic
energy for the suspension with the large particles and the
turbulent kinetic energy for particle-free flow does not in-
crease anymore. Ferrante and Elghobashi give particles for
which the response timetp is equal to the Kolmogorov time
tk (case D) the name “critical particles.” The still larger par-
ticles (case E) are called “large particles.” There is a special
case(case C), for which the damping rate is nearly the same
as for the particle-free case. For this reason Ferrante and
Elghobashi denote the particles of case C as “ghost par-
ticles,” since their effect on the turbulence cannot be detected
by their temporal behavior of the turbulent kinetic energy.

Figure 2 (Fig. 3 of Ferrante and Elghobashi) shows the
energy spectraEst ,kd for the carrier fluid in the suspension
for the five cases(A, B, C, D, and E) at dimensionless time
t=5. Microparticles(case B) increaseEst ,kd relative to the
particle-free flow(case A) at wave numberskù12, and re-
duce Eskd relative to case A fork,12, such thatEstd
=eEst ,kddk in case B is larger than in case A as shown in
Fig. 1. Also for the cases C, D, and E the particles dampen
the turbulence at small wave number compared to the
particle-free flow and enhance the turbulence at high wave
number. However the crossover wave number(the wave
number where the influence of the particles changes from a
turbulence-damping effect to a turbulence-enhancing one) in-
creases with increasing particle response time. As can be
seen from Fig. 2 large particles(case E) contribute to a faster
decay of the turbulent kinetic energy by reducing the energy
content at almost all wave numbers, except fork.87, where
a slight increase ofEst ,kd occurs.

We will now repeat briefly the explanation given by
Ferrante and Elghobashi for the mechanisms responsible for
the modification of decaying turbulence as shown in Figs. 1
and 2. We start with the microparticles. Because of their fast
response to the turbulent velocity fluctuations of the carrier
fluid, the microparticles are not ejected from the vortical
structures of their initial surrounding fluid. The inertia of the
microparticles causes their velocity autocorrelation to be

larger than that of the surrounding fluid. Since the micropar-
ticles’ trajectories are almost aligned with fluid points’ trajec-
tories, and their kinetic energy is larger than that of the sur-
rounding fluid, the particles will transfer part of their own
energy to the fluid. On the other hand, the microparticles
increase the viscous dissipation rate relative to that of the
particle-free flow. The reason is that the microparticles re-
main in their initially surrounding vortices, causing these
vortical structures to retain their initial vorticity and strain
rates longer than for the particle-free flow. The net effect is
positive for the turbulent kinetic energy of the carrier fluid,
as the gain in energy due to the transfer of energy from the
particles is larger than the increase in viscous dissipation.

For large particles the explanation is different. Because of
their significant response time large particles do not respond
to the velocity fluctuations of the surrounding fluid as
quickly as microparticles do, but rather escape from their
initial surrounding fluid (crossing the trajectories of fluid
points). Large particles retain their kinetic energy longer than
the surrounding fluid. However, because of the “crossing tra-
jectories” effect the fluid velocity autocorrelation is larger
than the correlation between the particle velocity and the
fluid velocity, causing a transfer of energy from the fluid to
the particles. On the other hand, large particles reduce the
lifetime of eddies, causing a viscous dissipation rate which is
smaller than for the particle-free flow. The net result of the
two opposing effects is a reduction of turbulent kinetic en-
ergy for a suspension with large particles at nearly all wave
numbers relative to the kinetic energy for the particle-free
turbulent flow.

It is emphasized that the explanation given above is a
brief summary of the explanation given in the publication of
Ferrante and Elghobashi. For more details their publication
should be studied.

IV. THEORETICAL PREDICTIONS

As mentioned in the Introduction the idea of this publica-
tion is to compare predictions made with the theoretical
model (extended for the application to a decaying turbulent
suspension) with the DNS results of Ferrante and Elghobashi
and to explain the results in terms of our model. To that
purpose we have repeated with our model the Ferrante-
Elghobashi calculations shown in Figs. 1 and 2. The results
are given in Figs. 3–10. In Fig. 3 we first show the compari-
son between the time development of the turbulent kinetic
energy of the carrier fluid(normalized by its initial value) for
the particle-free flow as found from the numerical simula-
tions and as predicted by the model. In order to compare our
predictions with the DNS results we have made time dimen-
sionless in Fig. 3 withtc=0.2144 s, as used by Ferrante and
Elghobashi. As can be seen the agreement between model
predictions and DNS results is reasonable.

Of course, much research has been carried out on the
decay of a homogeneous, isotropic turbulent flow of a fluid
without particles. For instance, in Hinze’s book on turbu-
lence[20] a review is given about this topic. It is stated that
in the initial period of decay(when the inertial effects are
important) the turbulent energy decreases with time ast−1

FIG. 2. Dimensionless kinetic energy of the carrier fluid as func-
tion of dimensionless wave number att=5.0. From Ferrante and
Elghobashi[9].
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and in the final period(when viscosity effects dominate) the
energy decreases ast−5/2. In more recent work, see, for in-
stance, Stalp, Skrbek, and Donally[21], it is reported that
initially the energy decays ast−6/5, then in case that the en-
ergy containing length scale saturates(because it reaches the
size of the containing vessel) it decays ast−2, and in the final
period again ast−5/2. In our future work we will make a
detailed comparison between predictions made with our
model and the results literature results mentioned above for a
particle-free turbulent flow. In this study we were, in particu-
lar, interested in a comparison with the DNS results of
Ferrante and Elghobashi. Our model predictions for the tur-
bulent decay rate for the particle-free case agree reasonably
well with their numerical results.

Figures 4 and 5 show model predictions for the time evo-
lution of the decaying turbulent kinetic energy of the carrier

fluid Efstd, normalized by its initial value, for suspensions
with different particle response time(also the energy for
the particle-free flow is shown). Similar to Ferrante and
Elghobashi the volume fractionsc=10−3d and mass fraction
sf=1d are fixed and the four types of particles correspond to
the following values of the ratiostp/tkd: 0.1, 0.25, 1.0, and
5.0. So the results for cases A–E in Figs. 4 and 5 can be
compared with those for cases A-E in Fig. 1. In Fig. 4 the
time development of the turbulent kinetic energy is given for
s0,t,3.5d. To see the initial development in more detail
we show in Fig. 5 the result in the smaller interval
s0,t,0.7d. It can be seen from the figures, that with in-
creasing particle response time the turbulent energy of the
carrier fluid decreases. The larger the particles(the larger
their inertia and response time), the stronger the turbulence
damping. However, as found in the DNS calculations, after a
certain period the difference between the turbulent energy of

FIG. 3. Dimensionless turbulent kinetic energy of the fluid as
function of dimensionless time for the particle-free case. Compari-
son between model predictions and DNS results.

FIG. 4. Dimensionless turbulent kinetic energy of the carrier
fluid in a suspension as a function of dimensionless time
s0,t,3.5d.

FIG. 5. Dimensionless turbulent kinetic energy of the carrier
fluid in a suspension as a function of dimensionless time
s0,t,0.7d.

FIG. 6. Dimensionless turbulent kinetic energy of the carrier
fluid as a function of dimensionless wave numberst<0.5d.
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the suspension for the large particles and the energy for the
particle-free case does not seem to increase anymore. For the
smallest particlesstp/tk=0.1d there is a reduction in the de-
cay rate during the periods0,t,1d. Also the DNS results
show this behavior(see Fig. 1), but during a larger period
s1,t,5d. So qualitatively the theoretical predictions agree
well with the DNS results, although quantitatively there are
some differences. We will come back to this point later on.

We have also calculated the energy spectraEfst ,kd for the
carrier fluid in the suspension for the five cases(A, B, C, D,
and E) and compared the predictions with the DNS results
given in Fig. 2. We will only show the results for the
particle-free flow(case A), the microparticles(case B), and
the large particles(case E). The results for ghost particles
(case C) and critical particles(case D) are in between those
for cases B and E. Fort<0.5 the results are shown in Fig. 6
(with an enlargement in Fig. 7), for t<1.5 in Fig. 8(with an
enlargement in Fig. 9), and fort<3.0 in Fig. 10.

There is a difference between our results and the DNS
results at small values ofk sk<1d. As discussed we assume
that att=0 the stirring force is stopped, the energy flux at
k=1 disappears and the decay process starts. So fortù0 the
energy flux ek=0 at k=1. Due to the cascade process of
turbulence the area whereEfst ,kd is influenced by the
boundary condition atk=1, grows towards largerk values
with increasing time(see the development of the spectrum
from t<0.5, via t<1.5 to t<3.0 in Figs. 6–10). In the
DNS calculations an initial spectrum is selected with
Efst ,kd=0 for k=0. At t=0 the stirring force is stopped and
the spectrum starts to decay. As can be seen from Fig. 2 this
leads to a different boundary condition atk=1. There is ob-
viously still an energy input into the spectrum atk=1 for
t.0 from the larger eddies. This may explain the detailed
differences between model predictions and DNS results.
However, as discussed the main conclusions are in our opin-
ion independent of the precise formulation of the initial con-
dition.

FIG. 7. Dimensionless turbulent kinetic energy of the carrier
fluid as a function of dimensionless wave numberst<0.5d. (En-
largement of Fig. 6.)

FIG. 8. Dimensionless turbulent kinetic energy of the carrier
fluid as a function of dimensionless wave numberst<1.5d.

FIG. 9. Dimensionless turbulent kinetic energy of the carrier
fluid as a function of dimensionless wave numberst<1.5d. (En-
largement of Fig. 8.)

FIG. 10. Dimensionless turbulent kinetic energy of the carrier
fluid as a function of dimensionless wave numberst<3.0d.
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It is clear from Figs. 6–10 that the particles dampen the
turbulence for small values ofk (large eddies) and enhance
the turbulence for large values ofk (small eddies). However,
there is a difference. The microparticles(case B) enhance the
turbulence over a much larger range ofk-values than the
large particles(case E). For microparticles the enhancement
is so strong, that for 0,t,1 the total energy over all eddies
is larger than for the particle-free flow. That is not the case
for the large particles. The crossover wave number(the wave
number where the influence of the particles changes from a
turbulence-damping effect to a turbulence-enhancing one) in-
creases with increasing particle response time. This result is
the same as found in the DNS calculations and as shown in
Fig. 2.

We will now give an explanation of the observed phenom-
ena in Figs. 6–10 in terms of our theoretical model. In prin-
ciple the explanation is similar to the one given for the case
of a stationary turbulent suspension(see L’vov et al.). An
important effect of the particles is that they increase the ef-
fective density of the suspension. As the dynamic viscosity is
not much influenced at low values of the particle volume
fraction, the kinematic viscosity of the suspension will de-
crease compared to the kinematic viscosity for the particle-
free case. This will decrease the Kolmogorov length scale
and hence elongate the inertial subrange of the energy spec-
trum. Mathematically this can be seen in the following way.
For instance, for particles with a very small response time
stpd Eq. (15) reduces to the equation for the particle-free
flow apart from the fact that the fluid Reynolds number Ref
is replaced by the suspension Reynolds number Res. For
small particle response time Res<Refs1+fd, so Res.Ref.
This means that the viscous damping termgst ,kd in Eq. (15)
is smaller than for the particle-free flow and the Kolmogorov
wave number shifts towards largerk values.

There is a second effect, that is in particular important in
the inertial subrange. There are two competing effects in that

subrange: an energy suppression due to the fluid-particle fric-
tion and an energy enhancement during the cascade process
due to the decrease of the effective density of the suspension
with decreasing eddy size. Particles become less involved in
the eddy motion with decreasing eddy size. A more detailed
investigation of this effect has been made by L’vovet al.and
it is shown that this effect can lead to a significant enhance-
ment of the turbulence in the inertial subrange dependent on
the conditions such as the ratio of the particle response time
and the integral time scale. It is the combination of the two
effects mentioned above, that explains the phenomena ob-
served in Figs. 6–10 in terms of our model.

V. DISCUSSION

An interesting conclusion of this work is that it seems
possible to give two different physical explanations for the
influence of particles on a(decaying) homogeneous, isotro-
pic turbulent suspension. One explanation(given by Ferrante
and Elghobashi) is based on a “microscopic” picture about
the interaction between individual particles and their local
fluid flow environment. The other one(given in this publica-
tion and earlier by L’vovet al.) uses a “macroscopic” picture
with eddy-size-dependent suspension properties, such as ef-
fective density, effective viscosity, effective damping, etc.
Both pictures give a satisfactory explanation, not only in
words but also mathematically.
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